Notebookcheck Logo

NVIDIA Quadro M5500 vs Nvidia RTX 1000 Ada Generation Laptop GPU vs NVIDIA Quadro 3000M

NVIDIA Quadro M5500

► remove from comparison NVIDIA Quadro M5500

The Nvidia Quadro M5500 is a high-end, DirectX 12 (FL_12_1) and OpenGL 4.5-compatible graphics card for mobile workstations. It is a Maxwell-based GPU built on the GM204 chip with all 2048 shader cores activated and is manufactured in 28 nm at TSMC. Therefore, the GPU is similar to the consumer Nvidia GeForce GTX 980 (Notebook). Compared to the slower and less power hungry Quadro M5000M, the M5500 offers 512 more shaders which should result in 30-40% more performance according to Nvidia.

The Quadro series offers certified drivers that are optimized for stability and performance in professional applications like CAD or DCC. OpenGL performance, for example, should be significantly better compared to GeForce graphics cards of similar specifications.

Using CUDA (Compute Capability 5.2) or OpenCL 1.2, the cores of the Quadro M5000M can be used for general calculations.

The power consumption of the Quadro M5000M is rated at the same TGP of 150 Watt. Therefore, the card is suited for very large notebooks with 17-inch displays or greater.

The first laptop with the M5500 in it is the MSI WT72 Workstation.

Nvidia RTX 1000 Ada Generation Laptop GPU

► remove from comparison NVIDIA Nvidia RTX 1000 Ada Generation Laptop GPU

The Nvidia RTX 1000 Ada Generation Laptop GPU, not to be confused with the A1000, P1000 or T1000, is a lower-end professional graphics card for use in laptops that sports 2,560 CUDA cores and 6 GB of GDDR6 VRAM. It would be fair to say that this is a GeForce RTX 4050 (Laptop) in disguise; consequently, both are powered by the AD107 chip and are fast enough to handle most games at 1080p with quality set to High. The product was launched in February 2024; it leverages TSMC's 5 nm process and the Ada Lovelace architecture. The Nvidia-recommended TGP range for the card is very wide at 35 W to 140 W leading to bizarre performance differences between different systems powered by what is supposed to be the same product.

Quadro series graphics cards ship with much different BIOS and drivers than GeForce cards and are targeted at professional users rather than gamers. Commercial product design, large-scale calculations, simulation, data mining, 24 x 7 operation, certified drivers - if any of this sounds familiar, then a Quadro card will make you happy.

Architecture and Features

Ada Lovelace brings a range of improvements over older graphics cards utilizing the outgoing Ampere architecture. It's not just a better manufacturing process and a higher number of CUDA cores that we have here; under-the-hood refinements are plentiful, including an immensely larger L2 cache, an optimized ray tracing routine (a different way to determine what is transparent and what isn't is used), and other changes. Naturally, these graphics cards can both encode and decode some of the most widely used video codecs, AVC, HEVC and AV1 included; they also support a host of proprietary Nvidia technologies, including Optimus and DLSS 3, and they can certainly be used for various AI applications.

The RTX 1000 Ada features 20 RT cores of the 3rd generation, 80 Tensor cores of the 4th generation and 2,560 CUDA cores. Increase those numbers by 20%, and you get the RTX 2000 Ada - as long as we pay no attention to clock speed differences, of course. Unlike costlier Ada Generation professional laptop graphics cards, the RTX 1000 comes with just 6 GB of non-ECC VRAM; the lack of error correction makes this card less suitable for super-important tasks and round-the-clock operation. The VRAM is just 96-bit wide, delivering a not-so-impressive bandwidth of ~192 GB/s.

The RTX 1000 Ada Generation makes use of the PCI-Express 4 protocol, just like Ampere-based cards did. 8K SUHD monitors are supported, however, DP 1.4a video outputs may prove to be a bottleneck down the line.

Performance

While we are yet to test a single laptop powered by an RTX 1000 Ada as of late February, we have plenty of performance data for the RTX 4050 Laptop. Based on that, we expect a run-of-the-mill RTX 2000 Ada to deliver:

  • a Blender 3.3 Classroom CUDA score of around 54 seconds
  • a 3DMark 11 GPU score of around 27,000 points
  • around 50 fps in GTA V (1440p - Highest settings possible, 16x AF, 4x MSAA, FXAA)
  • upwards of 30 fps in Cyberpunk 2077 (1440p - High settings, Ultra RT, "Quality" DLSS)

Nvidia's marketing materials mention "up to 12.1 TFLOPS" of performance, a downgrade compared to 14.5 TFLOPS delivered by the RTX 2000 Ada.

Your mileage may vary depending on how competent the cooling solution of your laptop is and how high the TGP power target of the RTX 1000 Ada is.

Power consumption

Nvidia no longer divides its laptop graphics cards into Max-Q and non-max-Q models. Instead, laptop makers are free to set the TGP according to their needs, and the range can sometimes be shockingly wide. This is exactly the case with the RTX 1000, as the lowest value recommended for it sits at just 35 W while the highest is 300% higher at 140 W (this most likely includes Dynamic Boost). The slowest system built around an RTX 1000 Ada can easily be half as fast as the fastest one.

Last but not the least, the improved 5 nm process (TSMC 4N) the RTX 1000 is built with makes for decent energy efficiency, as of early 2024.

NVIDIA Quadro 3000M

► remove from comparison

The NVIDIA Quadro 3000M is a professional workstation graphics card based on the Fermi architecture (probably GF104 like the GeForce GTX 470M). Compared to the 5010M, the 3000M does not support ECC memory and DP floating point calculations.

The Quadro series offers certified drivers that are optimized for stability and performance in professional applications like CAD, DCC, medicine, or visualisation areas. The OpenGL performance for example should be significantly better than similar specified GeForce graphics cards.

The shader / CUDA cores can be accessed using DirectX 11, OpenGL 4.1 for graphic rendering and DirectCompute, OpenCL, AXE, and CUDA for general purpose calculations. Due to the new Fermi core, the 3000M should offer a high performance in general purpose calculations.

Furthermore, the Nvidia Quadro 3000M is compatible with the new stereoscopic solution by Nvidia called: NVIDIA 3D Vision Pro.

To automatically switch between the processor graphics card and the Quadro, the 3000M supports Nvidia Optimus (if the laptop vendor chooses to integrate it).

As the GeForce GTX 470M, the Quadro 3000M is specified at 75 Watt TDP and therefore only suited for large laptops with 17 inch displays.

NVIDIA Quadro M5500Nvidia RTX 1000 Ada Generation Laptop GPUNVIDIA Quadro 3000M
Quadro M Series
Quadro M5500 2048 @ 1.14 - 1.14 GHz256 Bit @ 6606 MHz
Quadro M5000M 1536 @ 0.96 - 1.05 GHz256 Bit @ 5000 MHz
Quadro M4000M 1280 @ 0.98 - 1.01 GHz256 Bit @ 5012 MHz
Quadro M3000M 1024 @ 1.05 GHz256 Bit @ 5000 MHz
Quadro M2200 1024 @ 0.69 - 1.04 GHz128 Bit @ 5508 MHz
Quadro M1200 640 @ 0.99 - 1.15 GHz128 Bit @ 5000 MHz
Quadro M2000M 640 @ 1.04 - 1.2 GHz128 Bit @ 5000 MHz
Quadro M1000M 512 @ 0.99 - 1.07 GHz128 Bit @ 5000 MHz
Quadro M620 512 @ 1.02 GHz128 Bit @ 5012 MHz
Quadro 5010M 384 @ 0.45 GHz256 Bit @ 1300 MHz
Quadro 4000M 336 @ 0.48 GHz256 Bit @ 1200 MHz
Quadro M520 384 @ 0.76 - 1.02 GHz64 Bit
Quadro M600M 384 @ 0.84 - 0.88 GHz128 Bit @ 5012 MHz
Quadro M500M 384 @ 1.03 - 1.12 GHz64 Bit @ 4004 MHz
Quadro 5000M 320 @ 0.41 GHz256 Bit @ 1200 MHz
Quadro 3000M 240 @ 0.45 GHz256 Bit @ 625 MHz
Quadro 2000M 192 @ 0.55 GHz128 Bit @ 900 MHz
Quadro 1000M 96 @ 0.7 GHz128 Bit @ 900 MHz
NVIDIA RTX 5000 Ada Generation Laptop GPU 9728 @ 0.93 - 1.68 GHz256 Bit @ 20000 MHz
NVIDIA RTX 4000 Ada Generation Laptop GPU 7424 192 Bit @ 16000 MHz
NVIDIA RTX 3500 Ada Generation Laptop GPU 5120 192 Bit @ 16000 MHz
NVIDIA RTX 3000 Ada Generation Laptop GPU 4608 128 Bit @ 16000 MHz
NVIDIA RTX 2000 Ada Generation Laptop GPU 3072 128 Bit @ 16000 MHz
Nvidia RTX 1000 Ada Generation Laptop GPU 2560 96 Bit @ 16000 MHz
Nvidia RTX 500 Ada Generation Laptop GPU 2048 64 Bit @ 12000 MHz
Quadro M5500 2048 @ 1.14 - 1.14 GHz256 Bit @ 6606 MHz
Quadro M5000M 1536 @ 0.96 - 1.05 GHz256 Bit @ 5000 MHz
Quadro M4000M 1280 @ 0.98 - 1.01 GHz256 Bit @ 5012 MHz
Quadro M3000M 1024 @ 1.05 GHz256 Bit @ 5000 MHz
Quadro M2200 1024 @ 0.69 - 1.04 GHz128 Bit @ 5508 MHz
Quadro M1200 640 @ 0.99 - 1.15 GHz128 Bit @ 5000 MHz
Quadro M2000M 640 @ 1.04 - 1.2 GHz128 Bit @ 5000 MHz
Quadro M1000M 512 @ 0.99 - 1.07 GHz128 Bit @ 5000 MHz
Quadro M620 512 @ 1.02 GHz128 Bit @ 5012 MHz
Quadro 5010M 384 @ 0.45 GHz256 Bit @ 1300 MHz
Quadro 4000M 336 @ 0.48 GHz256 Bit @ 1200 MHz
Quadro M520 384 @ 0.76 - 1.02 GHz64 Bit
Quadro M600M 384 @ 0.84 - 0.88 GHz128 Bit @ 5012 MHz
Quadro M500M 384 @ 1.03 - 1.12 GHz64 Bit @ 4004 MHz
Quadro 5000M 320 @ 0.41 GHz256 Bit @ 1200 MHz
Quadro 3000M 240 @ 0.45 GHz256 Bit @ 625 MHz
Quadro 2000M 192 @ 0.55 GHz128 Bit @ 900 MHz
Quadro 1000M 96 @ 0.7 GHz128 Bit @ 900 MHz
ArchitectureMaxwellAda LovelaceFermi
Pipelines2048 - unified2560 - unified240 - unified
Core Speed1139 - 1140 (Boost) MHz450 MHz
Memory Speed6606 MHz16000 effective = 2000 MHz625 MHz
Memory Bus Width256 Bit96 Bit256 Bit
Memory TypeGDDR5GDDR6GDDR5
Max. Amount of Memory8 GB6 GB2048 MB
Shared Memorynonono
APIDirectX 12_1, OpenGL 4.5DirectX 12 Ultimate, Shader 6.7, OpenGL 4.6, OpenCL 3.0, Vulkan 1.3DirectX 11, Shader 5.0
Power Consumption150 Watt115 Watt (35 - 115 Watt TGP)75 Watt
Transistors5.2 Billion
technology28 nm5 nm40 nm
FeaturesCUDA, 3D Vision, PhysX, GeForce Experience, Surround, GameStream, GPU Boost 2.0, Adaptive Vertical Sync, G-SYNC, SLIOpenGl 4.1, FP32
Notebook Sizelargelargelarge
Date of Announcement04.04.2016 27.02.2024 22.02.2011
CodenameGN21-X2Fermi
TMUs80
ROPs32
Raytracing Cores20
Tensor / AI Cores80
CacheL2: 12 MB
Memory Bandwidth192 GB/s
PCIe4.0 x16
Displays4 Displays (max.), HDMI 2.1, DisplayPort 1.4a
Link to Manufacturer Pageimages.nvidia.com
Shader Speed900 MHz

Benchmarks

3DMark 11 - 3DM11 Performance Score
14413 Points (20%)
1742 Points (2%)
3DMark 11 - 3DM11 Performance GPU
1539 Points (1%)
3DMark Vantage
3DM Vant. Perf. total + NVIDIA Quadro 3000M
3DMark Vantage - 3DM Vant. Perf. total
7941 Points (2%)
3DM Vant. Perf. GPU no PhysX + NVIDIA Quadro 3000M
3DMark Vantage - 3DM Vant. Perf. GPU no PhysX
min: 6604     avg: 6661     median: 6660.5 (4%)     max: 6717 Points
3DMark 06 3DMark 06 - Standard 1280x1024 + NVIDIA Quadro 3000M
3DMark 06
min: 14054     avg: 14221     median: 14220.5 (19%)     max: 14387 Points
SPECviewperf 11
specvp11 snx-01 + NVIDIA Quadro 3000M
SPECviewperf 11 - specvp11 snx-01
20.4 fps (12%)
specvp11 tcvis-02 + NVIDIA Quadro 3000M
SPECviewperf 11 - specvp11 tcvis-02
22.9 fps (13%)
specvp11 sw-02 + NVIDIA Quadro 3000M
SPECviewperf 11 - specvp11 sw-02
30.1 fps (23%)
specvp11 proe-05 + NVIDIA Quadro 3000M
SPECviewperf 11 - specvp11 proe-05
7.6 fps (9%)
specvp11 maya-03 + NVIDIA Quadro 3000M
SPECviewperf 11 - specvp11 maya-03
42.5 fps (32%)
specvp11 lightwave-01 + NVIDIA Quadro 3000M
SPECviewperf 11 - specvp11 lightwave-01
34.7 fps (37%)
specvp11 ensight-04 + NVIDIA Quadro 3000M
SPECviewperf 11 - specvp11 ensight-04
18.3 fps (9%)
specvp11 catia-03 + NVIDIA Quadro 3000M
SPECviewperf 11 - specvp11 catia-03
24.6 fps (13%)
SPECviewperf 12
specvp12 sw-03 + NVIDIA Quadro M5500
SPECviewperf 12 - specvp12 sw-03
144 fps (36%)
specvp12 snx-02 + NVIDIA Quadro M5500
SPECviewperf 12 - specvp12 snx-02
120 fps (18%)
specvp12 showcase-01 + NVIDIA Quadro M5500
SPECviewperf 12 - specvp12 showcase-01
60.3 fps (13%)
specvp12 mediacal-01 + NVIDIA Quadro M5500
SPECviewperf 12 - specvp12 mediacal-01
53.8 fps (14%)
specvp12 maya-04 + NVIDIA Quadro M5500
SPECviewperf 12 - specvp12 maya-04
95 fps (26%)
specvp12 energy-01 + NVIDIA Quadro M5500
SPECviewperf 12 - specvp12 energy-01
12.2 fps (11%)
specvp12 creo-01 + NVIDIA Quadro M5500
SPECviewperf 12 - specvp12 creo-01
110 fps (44%)
specvp12 catia-04 + NVIDIA Quadro M5500
SPECviewperf 12 - specvp12 catia-04
137 fps (23%)
Cinebench R10 Cinebench R10 Shading (32bit) + NVIDIA Quadro 3000M
Cinebench R10 - Cinebench R10 Shading (32bit)
6519 Points (5%)
Cinebench R11.5 Cinebench R11.5 OpenGL 64 Bit + NVIDIA Quadro 3000M
Cinebench R11.5 - Cinebench R11.5 OpenGL 64 Bit
min: 45.4     avg: 45.5     median: 45.5 (16%)     max: 45.65 fps
Cinebench R15
Cinebench R15 OpenGL 64 Bit + NVIDIA Quadro M5500
Cinebench R15 - Cinebench R15 OpenGL 64 Bit
106.7 fps (6%)

Average Benchmarks NVIDIA Quadro M5500 → 0% n=

Average Benchmarks NVIDIA Quadro 3000M → 0% n=

- Range of benchmark values for this graphics card
- Average benchmark values for this graphics card
* Smaller numbers mean a higher performance
1 This benchmark is not used for the average calculation

Game Benchmarks

The following benchmarks stem from our benchmarks of review laptops. The performance depends on the used graphics memory, clock rate, processor, system settings, drivers, and operating systems. So the results don't have to be representative for all laptops with this GPU. For detailed information on the benchmark results, click on the fps number.

Fifa 11

Fifa 11

2010
high 1360x768
Quadro 3000M:
206.2  fps
ultra 1920x1080
Quadro 3000M:
127.3  fps
med. 1360x768
Quadro 3000M:
53.8  fps
ultra 1920x1080
Quadro 3000M:
11.5  fps
Risen

Risen

2009
med. 1024x768
Quadro 3000M:
66.7  fps
high 1366x768
Quadro 3000M:
39.6  fps
ultra 1920x1080
Quadro 3000M:
30.4  fps
Need for Speed Shift

Need for Speed Shift

2009
med. 1024x768
Quadro 3000M:
104.8  fps
high 1366x768
Quadro 3000M:
70.9  fps
ultra 1920x1080
Quadro 3000M:
43.3  fps
Colin McRae: DIRT 2

Colin McRae: DIRT 2

2009
med. 1024x768
Quadro 3000M:
113.5  fps
high 1360x768
Quadro 3000M:
71.4  fps
ultra 1920x1080
Quadro 3000M:
40  fps
Anno 1404

Anno 1404

2009
low 1024x768
Quadro 3000M:
187.6  fps
ultra 1280x1024
Quadro 3000M:
52.4  fps
NVIDIA Quadro 3000Mlowmed.highultraQHD4K
Fifa 11206.2127.3
Metro 203353.811.5
Risen66.739.630.4
Need for Speed Shift104.870.943.3
Colin McRae: DIRT 2113.571.440
Anno 1404187.652.4
< 30 fps
< 60 fps
< 120 fps
≥ 120 fps



1

1
3

1
2
1
1
4

1






For more games that might be playable and a list of all games and graphics cards visit our Gaming List

v1.28
log 01. 23:07:25

#0 checking url part for id 7282 +0s ... 0s

#1 checking url part for id 12424 +0s ... 0s

#2 checking url part for id 2433 +0s ... 0s

#3 redirected to Ajax server, took 1719868045 +0s ... 0s

#4 did not recreate cache, as it is less than 5 days old! Created at Mon, 01 Jul 2024 05:16:07 +0200 +0s ... 0s

#5 composed specs +0.031s ... 0.031s

#6 did output specs +0s ... 0.031s

#7 start showIntegratedCPUs +0s ... 0.031s

#8 getting avg benchmarks for device 7282 +0.026s ... 0.057s

#9 got single benchmarks 7282 +0.004s ... 0.061s

#10 getting avg benchmarks for device 12424 +0s ... 0.061s

#11 got single benchmarks 12424 +0s ... 0.061s

#12 getting avg benchmarks for device 2433 +0s ... 0.061s

#13 got single benchmarks 2433 +0.003s ... 0.064s

#14 got avg benchmarks for devices +0s ... 0.064s

#15 min, max, avg, median took s +0.01s ... 0.074s

#16 before gaming benchmark output +0s ... 0.074s

#17 Got 15 rows for game benchmarks. +0.001s ... 0.075s

#18 composed SQL query for gamebenchmarks +0s ... 0.075s

#19 got data and put it in $dataArray +0s ... 0.076s

#20 benchmarks composed for output. +0.002s ... 0.077s

#21 calculated avg scores. +0s ... 0.077s

#22 return log +0s ... 0.078s

Please share our article, every link counts!
> Expert Reviews and News on Laptops, Smartphones and Tech Innovations > Benchmarks / Tech > Graphics Card Comparison - Head 2 Head
Redaktion, 2017-09- 8 (Update: 2023-07- 1)